기술사 제 116 회

제 1 교시 (시험시간: 100분)

분 야 환경·에너지 <mark>자격</mark> 종목 소음진동기술사	수험 번호	성 명	
---	----------	--------	--

対は風利な

함께해요~ 청렴실천 같이해요!! 청정한국!!

- 1. 명료도(Articulation)와 이해도(Intelligibility)
- 2. Modal Testing 및 Modal Parameter
- 3. 소리 지향성(Sound Directivity)
- 4. 음향 임피던스(Acoustic Impedance)
- 5. 점성감쇠(Viscous Damping)와 구조감쇠(Structural Damping)
- 6. 레일리파(Rayleigh Wave)
- 7. Order Tracking 을 통한 임계속도(Critical Speed) 분석
- 8. NR 곡선(Noise Rating Curves)
- 9. 잔향시간의 주파수 특성
- 10. Weber-Fechner 법칙에서의 자극과 감각
- 11. 광대역 소음(Broad Band Noise)
- 12. 임계감쇠(Critical Damping)
- 13. 흡음을 고려한 실내음압레벨 계산 방법

기술사 제 116 회

제 2 교시 (시험시간: 100 분)

분 야	환경·에너지	자격 종목	소음진동기술사	수험 번호	성 명	
_ '		0 1				

- 1. 윤활베어링(Journal Bearing)과 롤러베어링(Roller Bearing)의 장단점을 설명하시오.
- 2. 다음과 같은 질량 M 이 1 kg 인 물체가 있다. 가진기와 가속도계, 힘검출기를 사용하여 전달함수를 도시하고 이를 통해 질량 M 이 1 kg 임을 검증하시오.

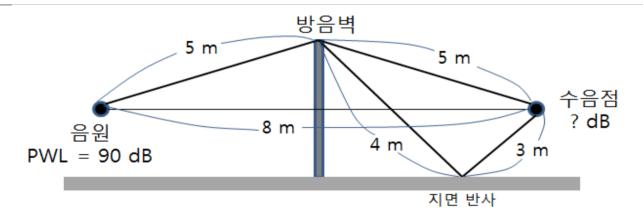
(단, 가속도계와 Stringer 의 질량과 강성은 무시하시오.)

- 3. 등가소음레벨(Leq)과 시간율소음레벨(Ln)에 대하여 설명하고, 소음의 특성에 따른 적용방법을 설명하시오.
- 4. 방음대책으로 많이 사용되는 Lagging(방음 피복제)의 대책 수립 시 주의사항과 감음량에 대하여 설명하시오.

기술사 제 116 회

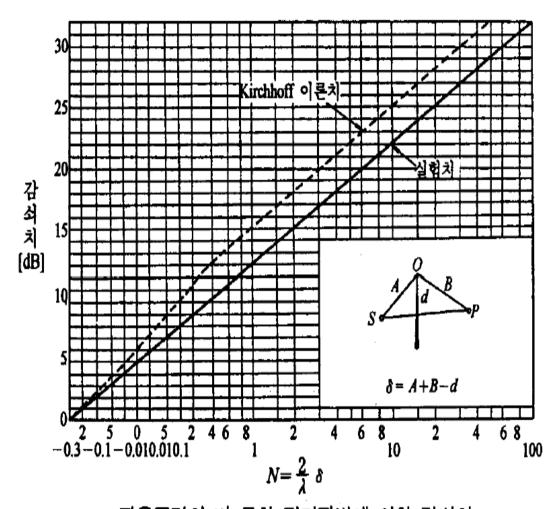
제 2 교시 (시험시간: 100 분)

5. 도로건설 현장에서 발생하는 진동이 구조물에 주는 피해와 양생 중인 콘크리트에 미치는


영향에 대하여 설명하시오.

3 - 1

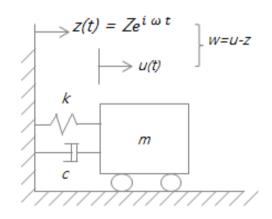
- 6. 500 Hz 대역의 소리를 발생하는 음원이 있을 때, 아래 조건과 같이 무한 길이로 가정된 방음벽에 의한 수음점에서의 회절감쇠치(dB)를 구하시오.
 - (단, 수음측 지면은 완전반사면으로 가정하고 기타의 영향은 무시한다.)


〈조건〉

- 음원의 음향파워레벨(PWL) 90 dB, 음원에서 수음점까지의 직선 거리 8 m 이고 방음벽의 두께는 무시한다.
- 음원 및 수음점에서 방음벽 상단까지의 직선거리는 각각 5 m 이고, 방음벽 상단에서 수음점까지 지면 반사된 음의 최단거리는 7 m 이다.
- N 값에 대한 감쇠치는 그래프 중 실험치를 적용하고 방음벽 상단에서 직접 도달하는 음과 지면으로 1 차 반사된 음만을 고려한다.

기술사 제 116 회 제 2 교시 (시험시간: 100 분)

분	하고 에너지	자격	ᄊᄋᆀᄃᆌᄉᆡ	수험	성	
야	환경·에너지	종목	소음신동기울사	번호	명	


자유공간의 반 무한 평면장벽에 의한 감쇠치

기술사 제 116 회

제 3 교시 (시험시간: 100 분)

	분 야	환경·에너지	자격 종목	소음진동기술사	수험 번호		성 명	
--	--------	--------	---------------------	---------	----------	--	--------	--

- 1. 실내에서 발생하는 음향 현상 중 정재파(Standing Wave)에 대하여 설명하고, 정재파가 음질에 미치는 영향 및 대책을 설명하시오.
- 2. 소음측정 시 수반되는 음향교정(Acoustic Calibration)과 마이크로폰 선택 시 고려해야 할 사항에 대하여 설명하시오.
- 3. Helmholtz Resonator 를 등가적인 1 자유도계 질량-강성-감쇠 시스템으로 표현하고, 공명주파수를 수식화하여 설명하시오.
- 4. 아래 그림과 같이 상대운동을 하는 기초 가진(Base Excitation) 시스템에 있어서, 기초 가진에 대한 상대 운동비 w/z 를 주파수 영역에서 도시하여 설명하시오.

기술사 제 116 회

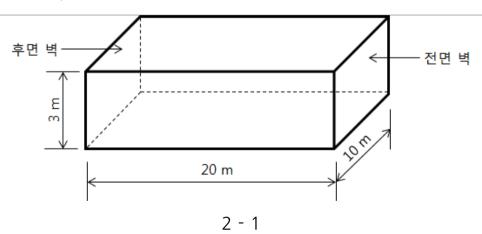
제 3 교시 (시험시간: 100분)

분 야 환경·에너지 <mark>자격</mark> 종목 소음진동기술사	수험 번호	성 명	
---	----------	--------	--

- 5. 국토교통부 고시 제 2016-824호, '바닥충격음 차단구조인정 및 관리기준'에서 제시하는 완충재 등의 성능평가기준 및 시험방법에 대하여 설명하시오.
- 6. 흡음재를 실내 표면에 마감재로 사용할 때 유의사항을 설명하시오.

기술사 제 116 회

제 4 교시 (시험시간: 100 분)

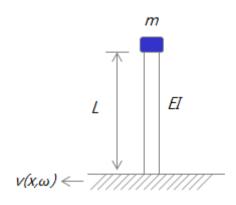

분	화경·에너지	자격	소음지도기숙 사	수험	성	
야	원 이 에이서	종목	<u> </u>	번호	명	

- 1. 고용노동부 고시 제 2016-39호, '작업환경측정 및 정도관리규정'에 의거하여 작업장 내소음수준의 측정방법 및 평가방법에 대하여 설명하시오.
- 2. 아래 그림과 같이 가로×세로×높이가 20 m×10 m×3 m 인 강의실에서 1 kHz 대역의 잔향시간을 Sabine 과 Eyring 의 식을 사용하여 각각 계산하고 비교하시오.

(단, 제시된 흡음율은 1 kHz 대역의 값이며, K 값은 0.161 을 사용한다.)

〈조건〉

- 바닥 면(20 m×10 m)과 양쪽 측면 벽(20 m×3 m)의 흡음율은 0.3
- 전면 벽(10 m×3 m)의 흡음율은 0.1
- 후면 벽(10 m×3 m)의 흡음율은 0.4
- 천장 면(20 m×10 m)의 흡음율은 0.5


기술사 제 116 회

제 4 교시 (시험시간: 100 분)

분	취건 에너크	자격	ᄼᅁᅜᆁᄉᆡ	수험	성	
야	환경·에너지	종목	소금신공기술사	번호	명	

- 3. 현장에서 많이 사용 되어지는 석고보드와 유공 석고보드의 흡·차음 특성과 혼합사용 시기대되는 효과를 설명하시오.
- 4. 진동이 지반을 전파할 경우에 수립할 수 있는 지중 전파경로에 대한 방지 대책을 설명하고 대책을 상호 비교하시오.
- 5. 강성 El 를 갖는 고정단 조건을 갖는 빔(Beam) 상단에 Tip 질량(m)이 붙어 있다. 이 질량이 고유진동수에 미치는 영향에 대해 설명하고, 수평방향의 기초 가진(Base Excitation) $v(x,\omega)$ 를 받을 때 1, 2, 3 차 모드형상을 바탕으로 질량(m)의 영향을 최소화 할수 있는 Tip 질량의 위치에 대하여 설명하시오.

(단, Tip 질량의 높이 h 는 h > L/2 이어야 함.)

6. 지진해석 중 SRSM(Seismic Response Spectrum Method)에 대하여 설명하시오.