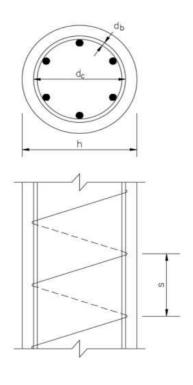
기술사 제 115 회

제 1 교시 (시험시간: 100분)

분	건설	자격		수험	성	
야	્ય ટ	종목	と今下なり置か	번호	명	

大学 图 的外

함께해요~ 청렴실천!! 같이해요~ 청정한국!!


※ 다음 문제 중 10문제를 선택하여 설명하시오. (각10점)

- 1. 고장력볼트 F10T와 F13T의 차이점에 대하여 설명하시오.
- 2. 도로교설계기준(한계상태설계법)의 하이브리드 강합성 거더에 대하여 설명하시오.
- 3. 닐센아치교의 구조적 장점에 대하여 설명하시오.
- 4. 콘크리트 유효탄성계수에 대하여 설명하시오.
- 5. 탄소섬유케이블에 대하여 설명하시오.
- 6. 최대비틀림에너지에 대하여 설명하시오.
- 7. 프리스트레스트 콘크리트구조에서 고강도 강재를 사용한 이유에 대하여 설명하시오.
- 8. 콘크리트의 크리프(Creep)에 대하여 설명하시오.
- 9. 설계기준강도 (f_{ab}) 와 배합강도 (f_{ab}) 에 대하여 설명하시오.
- 10. 기둥의 Secant 공식에 대하여 설명하시오.
- 11. 프리스트레스트 콘크리트 구조물에서 재료가 갖추어야 할 최소 조건에 대하여 설명하시오.
- 12. 압축인성(Compressive Toughness)에 대하여 설명하시오.
- 13. 용접이음의 안전율에 영향을 미치는 인자에 대하여 설명하시오.

<u>기술</u>	<u>:</u> 사 제 115	회			제 2 교시	(시험시긴	<u>난: 100분)</u>
분	건설	자격	토목구조기술사	수험		성	
야	건설	종목	도축구소기술사	번호		명	

※ 다음 문제 중 4문제를 선택하여 설명하시오. (각25점)

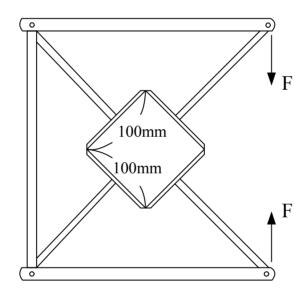
1. 그림과 같이 지름 h=420mm인 원형 나선철근 기둥에 축방향 철근 6-D25 $(d_b$ =25.4mm) 으로 보강되어 있다. 기둥의 설계강도 ϕP_n 및 소요 나선철근간격 s를 구하시오. (단, 나선철근 D13 $(d_b$ =12.7mm), f_{ck} =30MPa, f_{yt} =400MPa 및 나선철근 심부의 지름 d_c =340mm, ϕ = 0.7)

3 - 1

기술사 제 115 회 제 2 교시 (시험시간: 100분)

 분
 건설
 자격
 토목구조기술사
 수험
 성

 양
 종목
 번호
 명

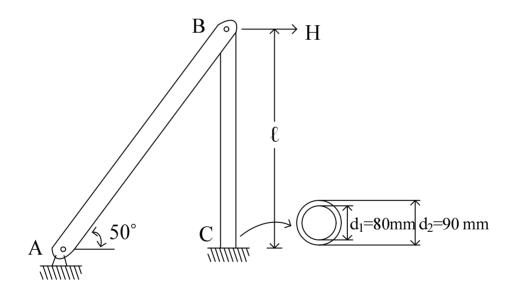

- 2. 교량용 콘크리트의 포켓기초에 대하여 설명하시오.
- 3. 콘크리트 구조물의 가동이음 형태를 열거하고, 그 이음의 기능적 고려사항에 대하여 설명하시오.
- 4. 강교에서 일반적으로 사용되고 있는 일반구조용 압연강재, 용접구조용 압연강재, 용접구조용 내후성 열간압연강재 및 교량구조용 압연강재의 재료적 특성에 대하여 설명하시오.
- 5. 프리스트레스트 콘크리트교량 가설공법 중 PSM(Precast Segment Method)의 특징과 설계 시 유의사항에 대하여 설명하시오.

기술사 제 115 회 제 2 교시 (시험시간: 100분)

 분
 건설
 자격
 토목구조기술사
 수험
 성
 명

6. 다음 그림과 같은 구조에 $100 \mathrm{mm} \times 100 \mathrm{mm} \times 100 \mathrm{mm}$ 크기의 콘크리트 구조체가 고정되어 있을 때 체적변화량 ΔV 와 변형에너지 U를 결정하시오.

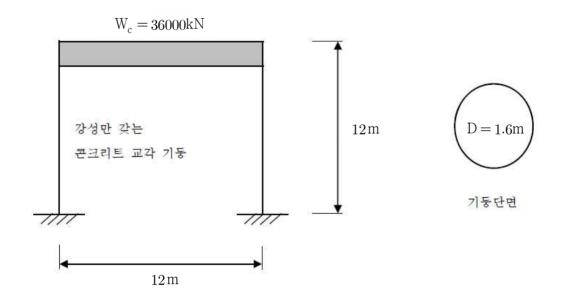
(단, 탄성계수 E=20,000 MPa, 포아송비 v=0.1 및 F=90kN)


기술	<u>당사 제 115</u>	회			제 3 교시	(시험시간	<u>간: 100분)</u>
분	건설	자격	토목구조기술사	수험		성	
야	건설	종목	도국기조기절사	번호		명	

※ 다음 문제 중 4문제를 선택하여 설명하시오. (각25점)

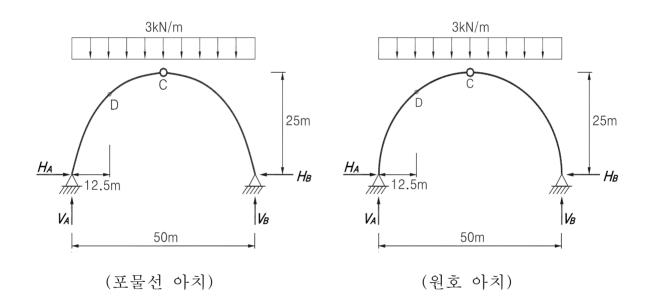
1. 그림과 같은 구조에서 기둥 BC의 길이 ℓ =3.7m일 때, 좌굴에 의해 B점에 횡변위가 발생하지 않도록 하기 위한 허용가능 최대수평하중 H_{\max} 를 결정하시오.

(단, 허용응력은 다음 근사공식을 사용한다.


$$\sigma_{allow} = \frac{\sigma_{Y}}{2} \left(1 - 0.5 \times \left(\frac{\lambda}{\lambda_{c}} \right)^{2} \right) \; , \quad E = 200,000 MPa \; , \; \sigma_{Y} = 350 MPa \; \;)$$

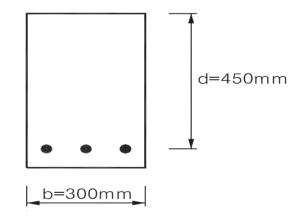
2. 염해환경하에 있는 콘크리트 구조물의 내구수명을 산정하기 위한 염화물이온 확산 계수, 표면염화물량, 임계염화물량 및 내구수명평가에 대하여 설명하시오.

기술	:사 제 115	회			제 3 교시	(시험시간: 100분)
분	건설	자격	토목구조기술사	수험		성
야	T. E	종목	エイーエバモー	번호		명


- 3. 소성힌지 보강철근이 없는 철근콘크리트 기둥과 충전식 강관기둥에서 압축하중 재하 시와 휨모멘트 재하 시의 파괴거동에 대하여 설명하시오.
- 4. 그림과 같은 교각의 교축직각방향 해석모형에 대하여 기둥의 설계지진력을 구하시오.
 (단, 교량 가설지역 조건 : 내진 I 등급, 지진구역 I, 지반종류Ⅱ이며, 콘크리트의 탄성계수 Ec = 2.35×10⁴MPa이다.)

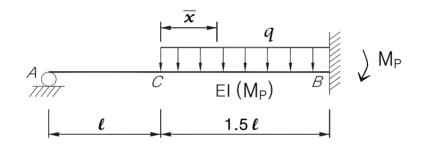
기술사 제 115 회 제 3 교시 (시험시간: 100분)

 분
 건설
 자격
 토목구조기술사
 선험
 명


- 5. 교량용 말뚝기초의 내진설계를 위한 구조해석방법에 대하여 설명하시오.
- 6. 그림과 같이 동일한 등분포하중을 받는 3힌지 포물선아치와 원호아치에서 D점의 단면력을 각각 구하고, 두 구조형식의 구조적 특성을 비교하여 설명하시오.

<u>기술</u>	<u>:</u> 사 제 115	회		제 4 교시	(시	<u> 험시간: 100분)</u>	
분	لا (د	자격	토목구조기숙사	수험		성	
야	건설	종목	토목구조기술사	번호		명	

※ 다음 문제 중 4문제를 선택하여 설명하시오. (각25점)

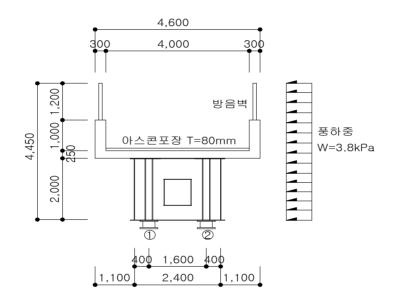

- 1. 그림과 같이 폭 b=300mm, 유효깊이 d=450mm를 가진 보에 3-D29 $(d_b$ =28.6mm) 인장 철근으로 보강되어 있을 때 단철근 직사각형 단면보의 설계 휨강도를 도로교설계기준 (한계상태설계법, 2016)에 의해 구하시오.
 - (단, f_{ck} =30MPa, f_y =400MPa, \varnothing_c =0.65, \varnothing_s =0.95, 압축합력의 크기를 나타내는 계수 α =0.80 및 작용점 위치를 나타내는 계수 β =0.41 이다.)

2. 콘크리트구조물에서 내구성 저하에 따른 철근부식 발생 메커니즘과 방지대책에 대하여 설명하시오.

<u>기술</u>	· 사 제 11	5 회			제 4 교시	(시	험시간: 100분)
분	الد اح	자격	F모그ス키스시	수험		성	
야	건설	종목	토목구조기술사	번호		명	

3. 그림과 같은 하중을 받는 1단힌지 타단고정보의 소성붕괴하중 q_c 와 소성힌지위치 x = 7하시오.

- 4. 사장교의 주케이블 및 닐센아치교 케이블로 사용되는 평행소선케이블(Parallel Wire Cable)과 평행연선케이블(Parallel Strand Cable)의 구조개요, 특성 및 부식방지 방법에 대하여 설명하시오.
- 5. 휨 부재의 횡 좌굴현상을 설명하고, 조밀단면으로 강축 휨을 받는 2축대칭 H 형강 부재의 횡지지길이 변화에 따른 영역별 휨강도 산정방법에 대하여 설명하시오.


기술사 제 115 회

제 4 교시 (시험시간: 100분)

분	건 설	자격	두모그국키스시	수험	성	
야	건설	종목	도독구소기술사	번호	명	

6. 그림과 같이 단경간 40m인 강합성 박스거더교의 콘크리트 방호벽 상단에 방음벽을 추가로 설치할 경우 다음 물음에 답하시오.

(단, 그림에 표기된 치수는 mm 단위이며, 극한한계상태 하중계수는 아래 표와 같다.)

하중의 종류	극한한계상태 하중계수				
लहुन उπ	최대	최소			
DC : 구조부재와 비구조적 부착물	1.25	0.9			
DW : 포장과 시설물	1.5	0.65			
WS : 구조물에 작용하는 풍하중	1.4	1.4			

- 1) 상부 고정하중과 풍하중에 의해 받침 ①, ②에 발생하는 연직반력을 도로교설계기준 (한계상태설계법, 2016)에 의해 구하시오.
 - (단, 강재거더 중량 15kN/m, 콘크리트 단위중량 24.5kN/m³, 방음벽 중량 1.5kN/m 및 아스콘포장 단위중량 23kN/m³이다.)
- 2) 받침 ①, ②의 연직반력 비대칭성을 줄이기 위해 받침을 강박스 복부재 하단으로 이동하여 받침 ①, ②의 간격을 당초 1.6m에서 2.4m로 넓혔을 때 연직반력 변화 및 강박스 보강방안에 대하여 설명하시오.