기술사 제 112 회 제 1 교시 (시험시간: 100분)

분	거 선	조모	거츠フス키스시	수험	성	
야	건설	87	石学 下全月室外	번호	명	

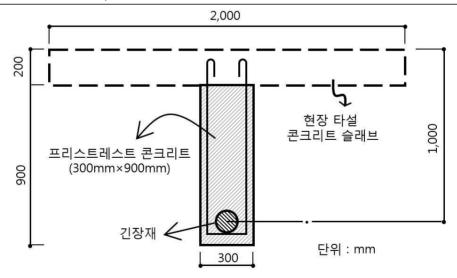
※ 다음 문제 중 10문제를 선택하여 설명하시오. (각10점)

- 1. 신뢰도 지수(Reliability Index)에 대하여 설명하시오.
- 2. 질량참여계수(Mass Participation Factor)에 대하여 설명하시오.
- 3. 최근 건설재료로 사용되기 시작한 초고성능 콘크리트 UHPC(Ultra High Performance Concrete)의 특성에 대하여 설명하시오.
- 4. 건축구조기준(KBC2016)에 명기된 유사활하중에 대하여 설명하시오.
- 5. 강구조 설계에서 인장력에 기초하여 설계되는 부재의 세장비(L/r)는 가급적 300을 넘지 않도록 하는 이유에 대하여 설명하시오.
- 6. 건축구조기준(KBC2016)에 따른 풍하중 산정 시 고려할 '지표면 조도구분'에 대하여 설명하시오.
- 7. 건축구조기준(KBC2016)에 따른 구조설계도(구조설계의 최종결과물로서 구조체의 구성. 부재의 형상, 접합상세 등을 표현하는 도면)에 포함되어야 할 내용에 대하여 설명하시오.
- 8. 내진설계에서 고려하는 건물형상의 수직비정형성 중 다음 유형에 대해서 설명하시오.
 - ① 강성 비정형-연층 ② 기하학적 비정형

- 9. 지진력을 받는 말뚝기초 설계 시 만족시켜야 되는 요구 조건에 대하여 설명하시오.
- 10. 지하외벽(basement wall)과 옹벽(retaining wall)의 차이점을 설명하고, 설계할 때 토압을 다르게 적용하는 이유를 설명하시오.
- 11. 비선형 해석 시 부재의 모델링 변수결정을 위한 부재력 결정 방법에 대하여 설명하시오.
- 12. 응답스펙트럼의 개념을 설명하시오.
- 13. 점탄성댐퍼, 마찰댐퍼의 이력곡선에 대하여 설명하시오.

※ 다음 문제 중 4문제를 선택하여 설명하시오. (각25점)

1. 그림과 같은 프리스트레스트 콘크리트 보에 폭 2,000mm, 두께 200mm의 슬래브를 현장 타설하여 합성보로 하고자 한다. 그림의 보를 18m 단순보로 지주를(support) 사용하지 않는 조건에서 시공 가능 여부를 검토하시오. (단. 처집에 대한 검토는 제외한다.)

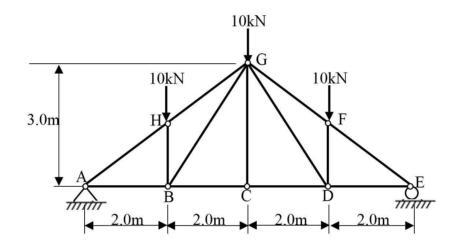

• 긴장재 : 강연선 $(A_q = 1,664 \,\mathrm{mm}^2)$

초기 긴장력 : P_i = 2,000 kN
유효 긴장력 : P_e = 1,700 kN

■ 보의 콘크리트 압축강도 : 40 MPa

• 슬래브의 콘크리트 압축강도 : 27MPa

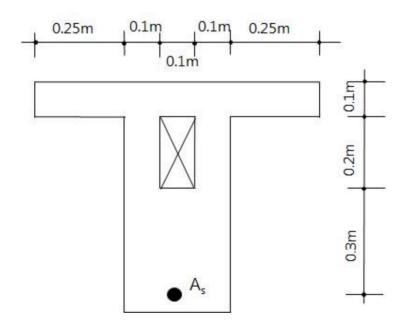
■ 콘크리트 중량 : 25 kN/m³



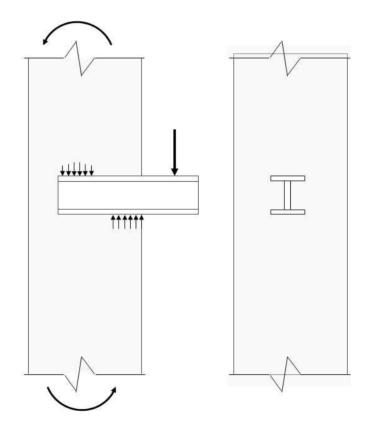
기술사 제 112 회 제 2 교시 (시험시간: 100분)

분 전설 종목 건축구조기술사 번호	성 명	
--------------------------------	--------	--

2. 그림과 같은 트러스 구조물에서 AB부재는 5mm, DE 부재는 10mm 짧게 제작되었다. G점의 수평변위를 구하시오.


(단, 모든 부재의 EA는 동일하며, E=200GPa, A=400mm²)

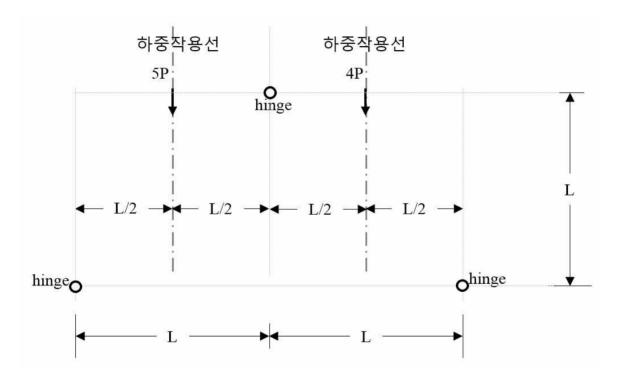
3. 푸시오버(pushover) 해석의 특성 및 해석과정에 대하여 설명하시오.


기술사	제 112 회	회			제 2 교시	(시험시간: 100분)
분 야	건설	종목	건축구조기술사	수험 번호		성 명

4. 그림과 같이 직사각형 결손부 $(0.1 \text{m} \times 0.2 \text{m})$ 가 있는 철근콘크리트 단근 T형보가 있다. 보에 배근할 수 있는 최대 인장철근량 (A_s) 과 그때의 모멘트 강도 (ϕM_n) 를 구하시오. (단, 사용재료의 강도는 $f_{ck}=30\,\text{MPa}$, $f_y=500\,\text{MPa}$, $E_s=2\times 10^5\,\text{MPa}$ 이다.)

기술사 제 112	회			제 2 교시	(시험시간: 100분)
분 야 건설	종목	건축구조기술사	수험 번호		성 명

5. 아래 철골보의 전단력은 전면과 후면의 압축력만으로 콘크리트 벽체로 전달되고, 지압력은 브라켓에서 하중전달과 같은 방식으로 전달되므로 그에 대한 트러스 모델을 적용할 수 있다. H형강 보가 벽 또는 기둥에 매입되는 경우에 대한 트러스 모델을 구성하시오.


<u>기술사</u>	· 제 112 호	회			제 2 교시	(시험시간: 100분)
분 야	건설	종목	건축구조기술사	수험 번호		성 명

6. 매입형 합성부재 또는 충전형 합성부재에 외력이 축방향으로 가해질 때, 강재와 콘크리트간에 전달되어야 할 힘의 크기 산정을 위한 외력의 분배조건에 대하여 설명하시오.

<u>기술</u>	·사 제 112 :	회		제 3 교시	(시험시간: 100분)	
분 야	건설	종목	건축구조기술사	수험 번호		성 명

※ 다음 문제 중 4문제를 선택하여 설명하시오. (각25점)

1. 그림과 같이 구조물을 3-hinge 골조로 구조계획을 하고자 한다. 골조에 작용하는 하중은 좌측과 우측에 집중하중으로 표현하였다. 골조에 휨모멘트가 발생하지 않고 축력만 발생하도록 골조의 형상을 그림으로 표현하시오.

기술사 제 112 회

제 3 교시 (시험시간: 100분)

분	건설	조모		수험	성	
야	신견	9 7	건축구조기술사 	번호	명	

2. 우측 그림과 같은 길이 L=3000mm인 연결보(Coupling Beam) (300mm×540mm)의 모멘트와 전단력은 다음과 같다.

 $M = 185 \,\mathrm{kN \cdot m}$, $V = 143 \,\mathrm{kN}$

변형 지배 작용, 하중 지배 작용을 구분하고 아래 표를 참조하여 보의 부재 비선형 모델의 변수(parameter) 값을 구하시오.

(IO, LS, CP로 구분)

$$K = \frac{6EI}{L}$$
, $E = 8500 \sqrt[3]{f_{cu}}$, $f_{ck} = 24 \, \mathrm{MPa}$, $f_y = 400 \, \mathrm{MPa}$

연결보 유효 강성 : $0.2EI_{q}$

Top: 5-HD16

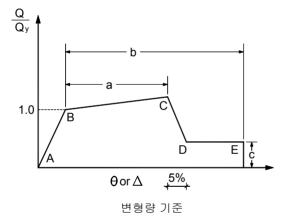
Bottom: 5-HD16

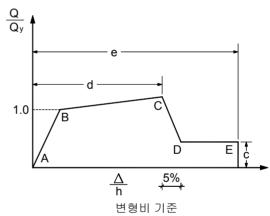
300

* 작용전단력비율 $V/(\sqrt{f_{ck}}\,b_wd)$, (단 d는 490mm로 검토한다.)

Stirrup : D10@100

		비선형	! 모델의 파리	-메터	허용기준(소성회전각, rad.)			
조건	소성회전각 (rad.)		잔류 강도비	거주	1차부재			
	a	b	С	가능 (IO)	인명 안전(LS)	붕괴 방지(CP)		
1. 휨에 의해 지배되	는 경우 : 연	결보(coupling	beam)					
내진상세단면인	0.25 이하	0.025	0.04	0.75	0.01	0.02	0.025	
경우	0.5 이상	0.02	0.035	0.5	0.005	0.01	0.02	
 비내진상세단면인	0.25 이하	0.02	0.025	0.5	0.006	0.012	0.02	
경우	0.5 이상	0.01	0.05	0.25	0.005	0.008	0.01	
대각선배근	N.A.	0.03	0.05	0.8	0.006	0.018	0.03	

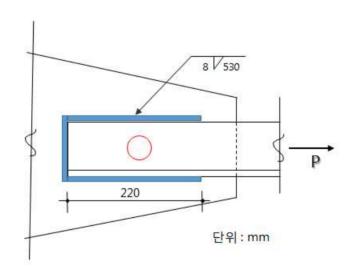

기술사 제 112 회


제 3 교시 (시험시간: 100분)

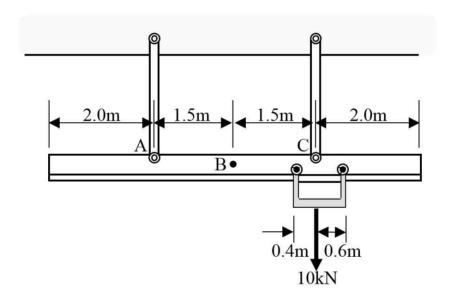
분	고 서	종목	コネファポスパ	수험	성	
야	건설	ठन	건축구조기술사	번호	퍵	

2.	전단에	의해	지배되는	경우 :	연결보(coupling	beam)
----	-----	----	------	------	--------------	-------

	작용	전체횡변형각(%) 혹은 전체회전각(rad.)		잔류 강도비	거주	1차부재 (% 또는 rad.)		
조건	전단력의 비율	d	e	c	가능	인명 안전	붕괴 방지	
 내진상세단면인	0.25 이하	0.02	0.03	0.6	0.006	0.015	0.02	
경우	0.5 이상	0.016	0.024	0.3	0.005	0.012	0.016	
비내진상세단면인	0.25 이하	0.012	0.025	0.4	0.006	0.008	0.01	
경우	0.5 이상	0.008	0.014	0.2	0.004	0.006	0.007	



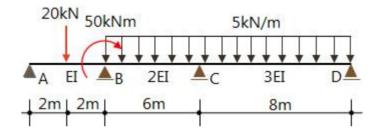
* C, D점은 5% 간격으로 한다.


기술시	- 제 112 호	회			제 3 교시	(시험시간: 100분)
분 야	건설	종목	건축구조기술사	수험 번호		성 명

- 3. 직경 40mm 원형 결손부를 갖는 L형강 $L-90\times90\times10$ 으로 그림과 같은 접합부 설계를 하였다. 인장재의 설계인장강도를 구하고, 설계인장강도에 대한 필릿용접부의 안전성 검토를 하시오.
 - (단, L형강의 재질은 SS400($F_y=235\,\mathrm{MPa}$)이며, 단면적은 $A_g=1700\,\mathrm{mm}^2$, 도심은 $C_x=C_y=25.4\,\mathrm{mm}$, Gusset Plate는 충분히 안전한 것으로 가정한다.)

기술사	제 112 호	회		제 3 교시	(시험시간: 100분)	
분 야	건설	종목	건축구조기술사	수험 번호		を で

4. 그림에서와 같이 10 kN의 장비가 매달린 레일 구조물에서 이동한다. B지점에서 발생하게 될 최대 휨모멘트를 구하시오.


- 5. 건축, 기계 및 전기 비구조요소는 등가정적하중과 변위에 견디도록 설계하여야 한다. 이때, 등가정적하중 산정 방법에 대하여 설명하시오.
- 6. 강관 트러스 접합부의 한계상태에 대하여 그림을 그리고 설명하시오.

기술사 제 112 회 제 4 교시 (시험시간: 100분)

분	건설	조모	고 고 고 고 고 고 고 고 고 고 고 고 고 고	수험	성	
야	신원	0	건축구조기술사	번호	명	

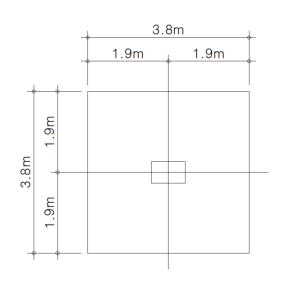
※ 다음 문제 중 4문제를 선택하여 설명하시오. (각25점)

1. 다음과 같은 연속보를 모멘트분배법을 이용하여 반력을 구하고 SFD, BMD를 그리시오.

2. 그림과 같은 조건의 기초판에서 전단 보강재를 배치하지 않는 상태로 작용 전단력을 지지할 수 있는 기초판의 두께를 결정하시오.

■ 기둥 크기: 400mm × 700mm

• 사용 고정하중 : 1,600 kN


■ 사용 활하중 : 1,300 kN

• $f_{ck}=24\,\mathrm{MPa}$

λ = 1(일반 콘크리트)

■ 내부기둥

 $\rho = 0.005$

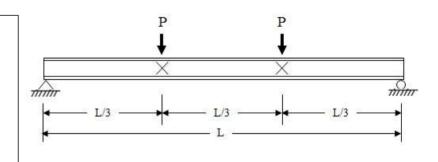
기술사 제 112 회 제 4 교시 (시험시간: 100분) 보

분	건설	조모	거축구조기숙사	수험	성	
야	신경	0 7	건축구조기술사	번호	명	

3. 길이 L=7.5m의 용접 H형강 보 H-600×300×9×12(SM490)가 아래 그림과 같이 단순 지지보가 L/3간격으로 횡비틀림이 구속되어 있다. 휨재의 국부좌굴과 전체좌굴을 고려해서 허용할 수 있는 최대집중하중 크기를 단계적으로 구하시오.

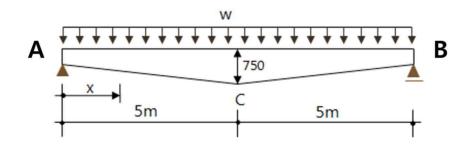
•
$$F_y=315\,\mathrm{MPa}$$
, $E=205\,\mathrm{GPa}$, 휨단면성능 : $r_{ts}=\sqrt{rac{I_y h_o}{2S_x}}$

• 압축플랜지 국부좌굴강도 : 웨브
$$\lambda_p = 3.76 \sqrt{\frac{E}{F_y}}$$


플랜지
$$\lambda_r=\lambda_{rf}=0.95\sqrt{\frac{k_cE}{F_L}}$$
, $\lambda_{pf}=0.38\sqrt{\frac{E}{F_y}}$

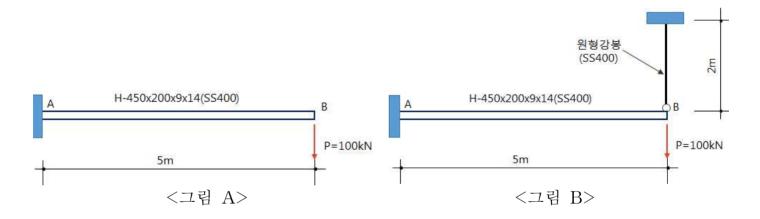
• 횡좌굴강도 :
$$L_p=1.76r_y\sqrt{\frac{E}{F_y}}$$
, $L_r=\pi\,r_{ts}\sqrt{\frac{E}{0.7F_y}}$

• 공칭모멘트 :
$$M_n = [M_p - (M_p - 0.7F_yS_x)(\frac{\lambda - \lambda_{pf}}{\lambda_{rf} - \lambda_{pf}})]$$


H형강 부재

- $\cdot A = 12384 \text{ mm}^2$
- $I_x = 7.657 \times 10^8 \text{m m}^4$
- $\cdot S_x = 2.55 \times 10^6 \text{mm}^3$
- $I_y = 5.4 \times 10^7 \text{m m}^4$

기술사	제 112 회	회		제 4 교시	(시험시간: 100분)	
분 야	건설	종목	건축구조기술사	수험 번호		성 명


- 4. 그림과 같은 비 균일단면 보가 있다. 등분포하중이 작용하고 있을 때 최대 휨응력이 발생하는 위치를 구하고, 허용휨응력이 $f_a = 20\,\mathrm{MPa}$ 일 때 작용할 수 있는 최대등분포 하중의 크기를 구하시오.
 - (단, 지점 A, B에서의 단면 크기는 300mm×300mm, 중앙부 C에서의 단면 크기는 $300 \,\mathrm{mm} \times 750 \,\mathrm{mm}$ 이며, 보 자중은 무시한다.)

5. 건축구조기준(KBC2016)에 따른 강구조에서 기둥과 보의 안정용 가새에 대하여 설명하시오.

기술	사 제 112	회		제 4 교시	(시험시간: 100분)	
분 야	건설	종목	건축구조기술사	수험 번호		な

- 6. <그림 A>와 같은 H-형강 캔틸레버 보의 처짐이 과도하게 발생하여 원형강봉을 이용하여 <그림 B>와 같이 매달고자 한다.
 - 1) <그림 A>에서 B점의 처짐량을 구하시오.
 - 2) <그림 B>와 같이 원형강봉으로 매달았을 때, B점의 처짐량이 10mm이하로 되기 위해 필요한 원형강봉(SS400)의 최소직경을 구하시오.
 - ($H-450\times200\times9\times14(SS400)$, $A=9.676\times10^3\,\mathrm{m\,m}^2$, $I_x=3.35\times10^8\,\mathrm{m\,m}^4$)
 - H-형강 및 원형강봉의 탄성계수 : *E* = 205 GPa
 - $SS400: F_y = 235 \,\mathrm{MPa}$

