기술사 제 94 회

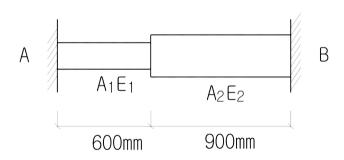
제 1 교시 (시험시간: 100분)

분	= P	자격	ㄷㅁㄱㄱ기ᄉᆡ	수험	성	
Oŧ	도둑	종목	도독구소기술사	번호	명	

※ 다음 문제 중 10 문제를 선택하여 설명하시오. (각 10 점)

- 1. 거더교의 종류를 사용 재료에 따라 분류하고, 그 특성을 내구성, 시공성, 유지관리성 측면에서 설명하시오.
- 2. 압연보(Rolled Beam)와 판형(Plate Girder)의 장·단점에 대하여 설명하시오.
- 3. 플랜지가 넓은 박스형 거더(Wide Flange Prestressed Concrete)의 장·단점에 대해서 설명하시오.
- 4. 콘크리트 크리프의 정의와 영향 인자를 설명하고, 크리프를 나타내는 방법 중 Whitney 법칙을 설명하시오.
- 5. 철도교에 작용하는 표준 활하중을 설명하고, 상기 활하중에 의해 레일상에 발생하는 하중 등을 설명하시오.
- 6. 프리스트레스트 콘크리트 거더를 캔틸레버 공법으로 시공하면서 거더를 교각에 임시로 고정하는 경우 검토해야 할 하중에 대해 설명하시오.
- 7. 강재의 취성파괴 방지를 위한 설계 및 제작과정에서 고려해야 할 유의사항에 대하여 설명하시오.
- 8. 조밀 단면과 비조밀 단면에 대하여 설명하시오.
- 9. 복합구조에 대해 정의하고, 이러한 구조형식을 교량에 적용한 예를 설명하시오.
- 10. 강재로 된 부재를 용접으로 연결할 때, 용접 설계원칙과 용접 종류별로 설계에 적용하는 응력 산정식을 설명하시오.

기술사 제 94 회


제 1 교시 (시험시간: 100분)

분	= P	자격	ㄷㅁㄱㄱ기ᄉᆡ	수험	성	
Oŧ	도둑	종목	도독구소기술사	번호	명	

- 11. 부정정 프리스트레스트 콘크리트 구조물의 장·단점에 대해서 설명하시오.
- 12. 프리스트레스 바닥판의 균열 원인에 대해서 설명하시오.
- 13. 아래 그림과 조건 하에서 고정단 B 점에서의 반력을 구하시오.

$$\langle$$
조건 \rangle α =1.0×10⁻⁵/CENTIGRADE (일정)--- TRIANGLET = 30CENTIGRADE---- A_1 =2,000 $rmmm^2$ A_2 =6,000 $rmmm^2$ E_1 =200,000 rm MPa ------ E_2 =30,000 $rmMPa$

_ _

기술사 제 94 회 제 2 교시 (시험시간: 100 분)

					<u> </u>		
분	E Q	자격	ᄃᄆᄀᇂᆌᄉᆡ	수험		성	
야	도푹	종목	도독구소기술사	번호		명	

※ 다음 문제 중 4 문제를 선택하여 설명하시오. (각 25 점)

- 1. 고속철도용 장대교량을 사장교로 건설하려고 할 때, 이에 대한 구조계획에 대하여 설명하시오.
- 2. 기초부 콘크리트 설계기준강도 27 MPa를 기준으로 수중보 구조물을 완공하였다. 그러나, 기초부의 실제강도가 20 MPa 이하로 판명된 경우, 전체 구조물의 안전성 확보 방안에 대하여 설명하시오.
- 3. 플레이트 거더(Plate Girder) 구조의 파손 특성에 대하여 설명하시오.
- 4. 아래 조건의 PSC 거더에서 시공시 강선의 신장량을 구하시오.

〈조건〉

강선의 곡률 $\alpha = 10^\circ$, 곡률 마찰계수 $\mu = 0.25/rad$,

파상 마찰계수 κ = 0.0050/m, 강선의 탄성계수 Ep = 200,000 MPa,

강선의 단면적 Ap = 1,200 mm², 강선의 유효길이 Le = 29.75 m,

긴장력 P = 1,530 kN, 초기 프리스트레스 Pi = 1,290 kN,

유효 프리스트레스 Pe = 1,120 kN, 콘크리트의 탄성계수 Ec = 30,000 MPa,

콘크리트의 단면적 Ac = 670,000 mm², 거더의 길이 30.0 m,

긴장장치의 자유장 200 mm

기술사 제 94 회

제 2 교시 (시험시간: 100분)

분	E Q	자격	드민기기기시니	수험	성	
야	도푹	종목	도국구소기물사	번호	명	

5. 다음 그림과 같이 설치된 교통안전시설에 대해 지주와 앵커볼트의 응력을 검토하고 앵커볼트의 매입 길이를 구하라.

〈조건〉

교통표지판의 중량은 10,000 N, 작용하는 풍압은 5,000 Pa 이고,

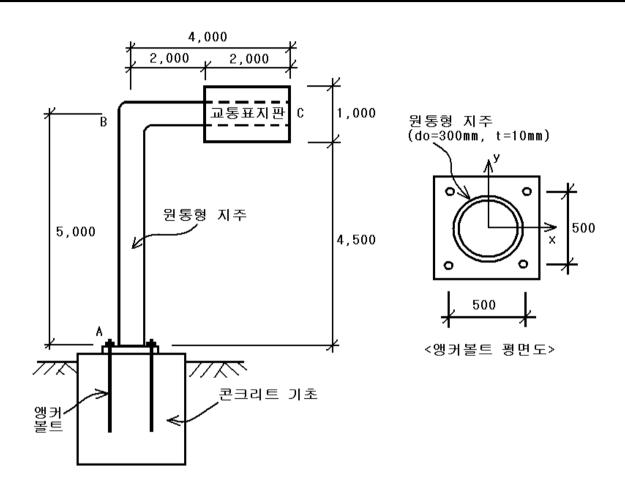
지주는 중공 강관으로서 외경 do = 300 mm, 두께 t = 10 mm,

허용 휨인장 응력 fsta = 140 MPa, 허용 휨압축 응력 fsca = 100 MPa,

허용 전단응력 fsva = 80 MPa 이며, 콘크리트의 허용 부착응력 fcwa = 2.0 MPa,

앵커볼트의 유효 외경 30 mm, 허용 인장응력 fbta = 180 MPa,

허용 전단응력 fbva = 100 MPa 이다.


지주의 중량은 무시하며, 지주와 교통 표지판의 중심선은 일치한다.

(단, 단위는 mm 임)

기술사 제 94 회

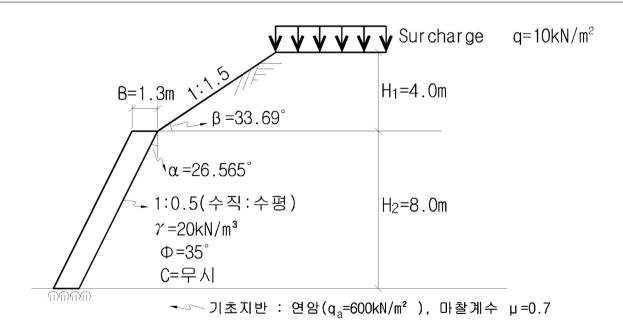
제 2 교시 (시험시간: 100분)

분	E Q	자격	드민기기기시니	수험	성	
야	도푹	종목	도국구소기물사	번호	명	

기술사 제 94 회

제 2 교시 (시험시간: 100분)

분	=0	자격		수험	성	
야	도축	종목	도독구소기술사	번호	평	


6. 아래 그림과 같은 경사형 옹벽의 평상시에 대한 안정 검토를 하고, 부재력과 벽면 토압의 계산을 지반 반력과의 관계로 해석 하고자 할 때, 이때의 해석모드, 변위 모드 및 지반 반력 관계를 그림으로 나타내시오.

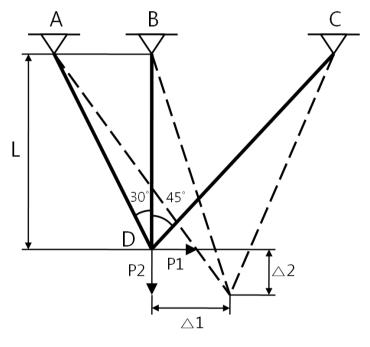
〈조건〉

콘크리트 설계 기준강도 f_{ck} =21rmMPa, 단위 중량 : 24 $rmkN/m^3$,

성토와 재하하중 등을 고려한 주동토압 계수 K_a 는 0.175 사용(토압산정시 성토고 및 재하하중은무시),

벽면 마찰각은 δ=2φ/3, 지지력 산정은 ^{max=i} ^{1.1SMALLSUMV} 이용한다.

4 - 4


기술사 제 94 회

제 3 교시 (시험시간: 100분)

분	= 0	자격		수험	성	
Oŧ	도족	종목	도국구소기술사	번호	명	

※ 다음 문제 중 4 문제를 선택하여 설명하시오. (각 25 점)

- 1. 콘크리트 구조물에 발생하는 온도균열 원인에 대하여 설명하시오.
- 2. 재료의 탄성과 비탄성, 선형과 비선형, 비선형 탄성, 등방성과 이방성, 균질성과 비균질성에 대해서 건설재료를 예로 들어 그림으로 설명하시오.
- 3. 원자력 발전소 격납 구조물의 건전성 평가방법에 대하여 설명하시오.
- 4. 아래 그림과 같은 트러스에서 D 점에 P1, P2 의 하중이 작용할 때, ▥1 과 ▥2 를 구하시오.(단, 부재의 EA 는 일정하다)


3 - 1

기술사 제 94 회

제 3 교시 (시험시간: 100분)

분	=0	자격	드민그코게스티	수험	성	
야	토목	종목	도목구소기물사	번호	명	

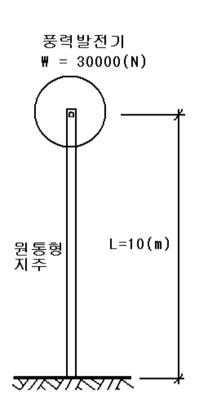
5. 아래 그림과 같은 DL-24 하중이 작용하는 연속보에서, 지점 B의 정(+), 부(-) 최대 휨모멘트를 구하기 위한 영향선, 종거 및 하중 재하위치를 구하시오.

6. 다음 그림과 같이 원통형 지주 상에 풍력발전기가 설치되어 있다. 구조계의 고유진동수와 허용진폭을 구하시오.

〈조건〉

풍력발전기의 중량은 30,000 N, 편심질량은 300 kg,

축차 편심은 50 mm 이고, 지주의 외경은 1,000 mm,

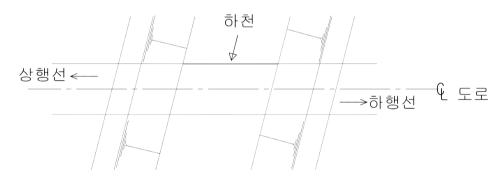

두께 tp= 50 mm, 허용 휨응력 fba = 100 MPa,

탄성계수는 200,000 MPa 이며, 지주의 질량은 무시한다.

기술사 제 94 회

제 3 교시 (시험시간: 100분)

분	= 0	자격	드민그코게스티	수험	성	
Oŧ	토목	종목	도목구소기물사	번호	명	


기술사 제 94 회 제 4

제 4 교시 (시험시간: 100분)

분	= 0	자격		수험	성	
Oŧ	도족	종목	도국구소기술사	번호	명	

※ 다음 문제 중 4 문제를 선택하여 설명하시오. (각 25 점)

- 1. 콘크리트 교량의 보수보강 공법 선정 시 고려해야 할 사항에 대해 설명하시오.
- 2. 도로교의 계획에서 교량 가설 위치와 교량 형식 선정에 대한 고려사항에 대해 설명하시오.
- 3. 아래 그림과 같이 교량이 하천을 사각으로 횡단할 때, 교량의 평면 배치 방법(경간분할 제외)을 설명하고, 그 배치 방법에 따른 역학적 특성과 문제점을 설명하시오. (단, 상하행분리 교량이다.)


기술사 제 94 회

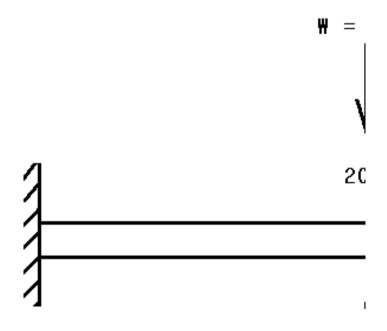
제 4 교시 (시험시간: 100분)

분	= Q	자격	드민그코리스티	수험	성	
야	도독	종목	도독구소기술사	번호	명	

4. 다음과 같은 복철근보에서 850 kN.m의 휨모멘트가 작용한다. 인장 철근량이 부족할 경우 탄소 섬유 쉬트를 보강하고자 할 때, 탄소섬유 쉬트 매수와 응력을 검토하시오. (단, 유효계수는 정수로 하며, 길이 단위는 mm 임)

 \langle 조건 \rangle --콘크리트 ; f_{ck} =24rmMPa , ------ E_c =2.5 \times 10 4 rmMPa------- f_{ca} =9.6rmMPa--철근 ; f_y =400rmMPa , ----- E_s =2.0 \times 10 5 rmMPa ------ f_a = 180rmMPa--탄소섬유 쉬트 : t_f =0.15rmmm ----- E_f = 3.8 \times 10 5 rmMPa ------ f_{fy} =3,000rmMPa

기술사 제 94 회


제 4 교시 (시험시간: 100분)

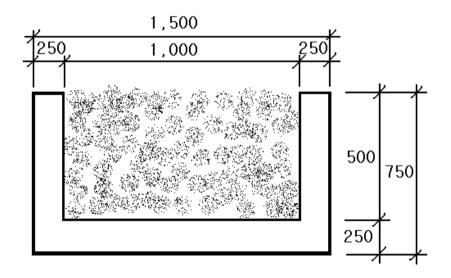
분	= 0	자격	드민그코리스기	수험	성	!
야	도푹	종목	도독구소기술사	번호	B	

5. 집중하중(P)을 받는 길이가 L인 캔틸레버 보에 대한 휨 변형 에너지 식을 유도하고, 연직으로 200 mm 간격의 일단 고정 캔틸레버 보로 설치된 가설발판을 몸무게(W) 700 N 인 인부가 내려오고 있을 때, 가설발판에 발생하는 최대 휨응력을 구하시오.

〈조건〉

보의 길이는 500 mm, 보의 단면은 구형이고 폭 500 mm, 높이 50 mm 이며, 보 재료의 탄성계수 50,000 MPa 이고, 전단변형에 의한 영향은 무시한다.

기술사 제 94 회


제 4 교시 (시험시간: 100분)

분	= 0	자격	토목구조기술사	수험	성	
야	도둑	종목		번호	명	

6. 다음 그림과 같이 철근 콘크리트 U 형 단면을 통해 오니를 이동시킬 때, 단면에 발생하는 최대 응력을 구하시오.

〈조건〉

오니의 자중은 20 kN/m³로 가정하고 오니의 이동속도는 무시하며, 단면은 단순 지지되어 있고 지간장은 7 m 이다. (단, 단위는 mm 임)

